Improved yield of α-L-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover
نویسندگان
چکیده
Background: In the view of depleting resources and ever-increasing price of crude oil, there is an urge for the development of alternative sources to solve the issue of fuel in the coming years. Lignocellulosic biomass is considered to be the most potential alternative resources for fossil fuel. Bioconversion of cellulosic and hemicellulosic components into fermentable sugars is the key step in producing fuel ethanol from lignocellulose. The enzymatic hydrolysis of lignocellulosic biomass needs a highly balanced composition of cellulases and hemicellulases. Commercial enzymes are usually poor in accessory hemicellulolytic enzymes like α-L-arabinofuranosidase. The addition of such accessory enzymes in combination with cellulase or hemicellulase plays a vital role in improving the total yield of fuel ethanol by enhancing the saccharification yield. Results: The newly isolated fungal strain Aspergillus niger ADH-11 produced a maximum of 22.14 U/g of α-L-arabinofuranosidase under solid-state fermentation using wheat bran as the substrate and modified Mandels-Weber medium at 30°C after 180 h of incubation. The optimization of various fermentation parameters was performed by response surface methodology employing Plackett-Burman design followed by Box-Behnken design. The yield of α-L-arabinofuranosidase was enhanced by 2.34-fold after executing statistical optimization of various fermentative parameters. Crude α-L-arabinofuranosidase was found to be highly stable for 3 h at its optimum temperature (55°C) and pH (4.0). The assessment of the crude enzyme extract in saccharification of alkali-treated maize stover revealed that the supplementation of crude α-L-arabinofuranosidase to commercial cellulase and crude xylanase mixture increased the saccharification yield up to 730 mg/g of maize stover. Conclusions: The newly isolated A. niger ADH-11 was found to be a potential producer of α-L-arabinofuranosidase. The crude enzyme was active at low pH and high temperature which makes it suitable for various industrial applications such as enzymatic saccharification of lignocellulosic biomass. The supplementation of α-L-arabinofuranosidase enzyme to commercial cellulases and hemicellulases improves the bioconversion of lignocellulosic biomass to a greater extent.
منابع مشابه
Saccharification of pretreated sawdust by Aspergillus niger cellulase
The efficiency of two methods of pretreatment (NaOH and H2O2) on lignocelluloses-saw dust, wheat straw, sugarcane bagasse and rice bran-was compared in the present study. Alkali treatment of lignocelluloses relatively removed more hemicelluloses and lignin leaving behind cellulose content in the residues than peroxide treatment. Crude cellulase of Aspergillus niger, produced on the pretreated s...
متن کاملHydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil
Eight Aspergillus niger strains which produced strong starch degrading amylase were isolated from the soil using a medium containing Remazol Brilliant Blue (RBB) starch as substrate. Amylase production was detected by the disappearance of the blue colour around the colony. Among the isolates, A. niger AM07 produced the largest clear zone (7.0mm) on Remazol Brilliant Blue (RBB) agar plate and al...
متن کاملEnzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01
Alkali-assisted acid pretreated rice straw was saccharified using cellulase from Aspergillus niger BK01. The cellulase production by the fungus was enhanced by parametric optimization using solid-state fermentation conditions. Maximum cellulase production (12.0 U/gds of carboxymethyl cellulase, CMCase) was achieved in 96 h, using 6.0% substrate concentration, 7.5% inoculum concentration, 1:2 so...
متن کاملHemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides
BACKGROUND High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia f...
متن کاملOptimization of Antibacterial Compounds Production by Aspergillus fumigatus Isolated from Sudanese Indigenous Soil
The purposes of the present study were to screen the ability of Aspergillus fumigatus to produce antibacterial compounds using different growth parameters namely, pH, temperature, agitation and time of fermentation and investigate the effect of the yield against bacterial isolates. A. fumigatus was isolated from arable lands in Sudan and identified macroscopically and microscopically. The pure ...
متن کامل